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Abstract. The self-consistent tight-binding (SCTB) model proposed by Majewski and Vogl 
has been extended to be applicable for calculations of lattice defects in solids or disordered 
systems with both ionic and covalent characters that cannot be treated using other types of 
tight-binding theories. The precise formulation of electronic structure, total energy and 
atomic forces in the supercell technique has been presented. In order to apply this method 
to lattice defects in SIC. the parameters and functional forms have been examined so as to 
reproduce the basic properties of Si. S i c  and C.  The nature of the bonding and the phase 
stability in Si and S i c  have been analysed by the present SCTB method. 

1. Introduction 

By virtue of the advances in theoretical methods in solid-state physics and the devel- 
opment of high-performance computers, it is possible to investigate theoretically the 
atomic structures and total energies of complex systems, such as dislocations, surfaces, 
grain boundaries, amorphous systems, liquids or clusters. The theoretical methods can 
be classified into the following three groups. 

The first group is the ab initio method, where atomic structures and total energies 
are determined via first-principles calculations of electronic structures. The recent 
development of the dynamical simulated annealing method [l] has enabled us to deal 
with systems of a large number of atoms from the first-principles density-functional 
theory. However, this type of method is time-consuming as yet, and the numbers of 
tractable atoms are limited as compared with the other groups of methods. 

The second group is empirical methods where atoms or ions are treated without 
calculating electronic structures. For ionic solids or metals, total energies are frequently 
expressed as a sum of two-body inter-ionic or inter-atomic potentials [2,3]. Recently, 
for covalent solids such as Si, various inter-atomic potentials including many-body terms 
have been proposed [4]. In these methods, calculations of total energies and atomic 
forces are quite simple, and a fairly large number of atoms can be dealt with. However, 
inter-ionic or inter-atomic potentials are determined empirically in general, and results 
should be regarded as qualitative. It should be noted that it is not possible to determine 
simple potential forms between atoms applicable to any local environments, especially 
in covalent systems, where it is essential to calculate electronic structure. 
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The third group of theoretical methods are those where total energies and atomic 
forces are given via semi-empirical calculations of electronic structures. These methods 
intervene between the former two groups of theoretical schemes. The quantitative 
reliability is not necessarily enough as compared with the ab initio methods, but a fairly 
large number of atoms can be dealt with by virtue of simple expressions of electronic 
structures and total energies. For example, the semi-empirical tight-binding (SETB) 
method [5] and the tight-binding bond (TBB) model [6] have been shown to be quite 
useful for calculations of various systems of semiconductors and transition metals [7-91. 
In these methods, total energies are expressed as a sum of the band-structure energy 
and the short-range repulsive interaction between atoms. The band-structure energy is 
a sum of occupied eigenenergies calculated via the tight-binding approximation [ 101. 
The atomic forces can be given quite simply via the Hellmann-Feynman theorem 

It should be noted that the SETB method and the TBB model are effective in semi- 
conductors or transition metals, where the inter-atomic electrostatic interaction can be 
neglected or local charge neutrality is a good approximation. Recently, attempts to 
justify these semi-empirical schemes from the first-principles density-functional theory 
have been carried out [6, 121, where it is essential that the self-consistent charge dis- 
tribution is not too different from the superposition of free atomic charges. In other 
words, the usual tight-binding methods are improper in treating systems with both 
ionic and covalent characters where charge redistribution and long-range Coulomb 
interaction are important as well as covalent energy. It is necessary to develop theoretical 
schemes belonging to the third group and capable of treating systems of both ionic and 
covalent characters, 

The self-consistent tight-binding (SCTB) method [13,14] is just such a method that 
belongs to the third group and can deal with both ionicity and covalency on an equal 
footing. Majewski and Vogl [13] have presented the formulation of calculations of 
electronic structure and total energy in this method, and have shown that structural 
properties and crystal stability of various sp-bonded semiconductors and insulators can 
be adequately reproduced by this method. It is important to apply this method to 
calculations of lattice defects or disordered systems as well as the SETB method and the 
TBB model. For this purpose, it is essential to clarify how to calculate atomic forces in 
this theoretical scheme. In our previous paper [14], we have shown that atomic forces 
can be given very easily via the Hellmann-Feynman theorem in the SCTB method as well 
as in other tight-binding theories. 

In the present paper, first, we present more clearly the formulation of electronic 
structure, total energy and atomic forces in periodic systems in order to apply the SCTB 
method to defect calculations with use of the supercell technique. Secondly, we examine 
several functional forms and parameters in the SCTB method so as to reproduce the basic 
properties of Si, S i c  and C in order to apply this method to calculation of a grain 
boundary in S i c  in our following paper. 

[5,6> 111. 

2. Theoretical method 

In this section, we formulate the SCTB method for calculating electronic structures, total 
energies and atomic forces in periodic systems such as supercells or perfect crystals. 
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The orthogonalised basis functions are constructed as 

lia, k) = N-’ /*  exp[ik * ( t ,  + R ) ] q i n ( r - t i  - R )  (1) 
R 

where q,,(r-  ti - R )  is the a th  atomic orbital centred on an atom i located at ti + R ,  R is 
a lattice vector representing each unit cell of the periodic system and N is the number of 
unit cells in the system. The eigenfunction with wavevector k and band index n is 
expressed as 

x (q,& - t ,  - R’)I. (3) 
Here Hep(t, + R ,  t, + R ‘ )  is the Hamiltonian matrix element between the two atomic 
orbitals and is expressed using the two-centre integrals via the two-centre approximation 

In equation (3) E,, is the on-site element. In the SCTB method, the effects of the 
charge transfer between atoms and the overlap between atomic orbitals are included in 
this on-site element self-consistently as follows: 

Here E!, is the a th  energy level of a free atom i. The second term expresses the change 
in the intra-atomic Coulomb potential. Q, is the self-consistent occupancy of the atom 
i ,  Z,  is the charge of the ion i and U, is an average of the intra-atomic two-electron 
Coulomb integrals of the valence electrons in the free atom i. The atomic occupancy is 
given by the orbital occupancies e,, as 

[lo]. 

E,,  = E?, + u,(Q, - Z , )  + P ,  + f i n .  (4) 

Q,  = 2 Q,, 
CY 

and 
occ 

n.k 

where the sum is taken over occupied eigenstates with wavevector k and band index n. 
The third term in equation (4) is the inter-atomic electrostatic potential for an 

electron located on the atom i and expressed as 

where 

= 2 V(tj  + R - t i )  
R 

@ o  = 2 V ( R )  
R#O 

and j  indicates the atoms other than i in the unit cell. Here V(rj - ri) is an effective inter- 
atomic electrostatic function, which includes the effect of charge overlap for short 
distances and expresses an ordinary Coulomb interaction for large distances. 
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The fourth term in equation (4) is the non-orthogonality correction. When the local 
basis functions are orthogonalised, the effect of the overlap between local atomic orbitals 
is approximately introduced to first order into the on-site elements [15]. This term is 
expressed as 

In this expression, the sum is taken over neighbouring atomic orbitals. 
The electronic structure can be given by solving the above one-electron Schrodinger 

equation self-consistently . The total energy is given within the Hartree approximation 
as 

Etot = Ebs - + Ei-i (sa) 

where Ebs is the band-structure energy and expressed as 
ncc 

r1.k in 

ncc 

+ C:,k"Cji 2 exp[ik. (ti + R - t i ) ] H a p ( t , ,  ti + R )  (8b) 
n .k  in i/3 R 

and En, is the eigenenergy. The binding energy EB is defined as E,,, -E:,,, , where 
E:,,, is the total energy of the free atoms constituting the system. As shown in our 
previous paper [14], the binding energy per unit cell in the periodic system can be 
expressed as a sum of the following four terms: 

= Epro + -t E,\ + EMad (90) 
where 

ncc 

X exp[i k ( t ,  + R - t l ) ] H n p ( t i ,  tl + R )  
R 

Eo, = C Qlnfin 
in 

( 9 4  

and 

Epro includes the promotion energy and the change in the intra-atomic electrostatic 
energy. E,,, is the covalent energy. This term is given by subtracting the on-site con- 
tributions from the band-structure energy, and contains only the contributions from the 
inter-atomic covalent bonding. E,, is the overlap interaction energy, which expresses 
the increase in the kinetic energy of the electrons upon compression [15, 161. This term 
is often given by a simple sum of inter-atomic potentials in usual tight-binding theories. 
In the present formulation, the effect of local electronic structure can be incorporated 
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in this term. EMad is the inter-atomic electrostatic interaction energy, which is a sum of 
the interactions between atoms with effective charges, Qi - Zi. 

As shown in our previous paper [14], the atomic forces in the SCTB method can also 
be given very easily via the Hellmann-Feynman theorem. This is applicable also in the 
periodic system as follows: 

occ 

The atomic forces are given only by solving the Schrodinger equation self-consistently. 
The first term is the contribution from the covalent energy. This is essentially a many- 
body force given by the electronic structure of the system. The second term is the 
contribution from the overlap interaction. The third term is the contribution from the 
inter-atomic electrostatic interaction. 

It should be noted that in the present SCTB method both covalency and ionicity can 
be treated on an equal footing. In the sEm method [ 5 ] ,  the self-consistency and the inter- 
atomic electrostatic interaction energy EMad are neglected in general. In the TBB model 
[6], the local charge neutrality is imposed and EMad is forced to be zero. It is obvious that 
these two methods are not capable of treating systems where both covalent and ionic 
characters are important. On the other hand, the ionicmodel[2], where the total energy 
is expressed as a sum of inter-ionic electrostatic potentials, corresponds to the neglect 
of E,,, in the total energy. This model is also improper in a system containing covalency. 

In this way, the remaining work is to determine the functional forms and parameters 
for the two-centre integrals of the Hamiltonian and the overlap matrix, the effective 
inter-atomic electrostatic function and so on. If this work can be done successfully, 
the SCTB method with the above-mentioned formulation is a powerful scheme for 
calculations of lattice defects or disordered systems with both ionic and covalent charac- 
ters as well as the SETB method and the TBB model in covalent systems. Fortunately, 
Majewski and Vogl [13] have found that simple and universal functional forms and 
parameters can be applicable to various sp-bonded semiconductors and insulators. 

In the next section, in order to apply the SCTB method to lattice defects in Sic ,  we 
have examined several sets of functional forms and parameters so as to reproduce the 
basic properties of Si, S i c  and C. In the lattice defects such as grain boundaries in Sic ,  
it is possible that there exist Si-Si or C-C bonds. Thus it is necessary that the basic 
properties of all Si, S i c  and C are reproduced by using the SCTB method. Unfortunately, 
this is not so easy because elements and compounds with atoms in the first row of the 
periodic table have special characters in general. 

3. Functional forms and parameters for Si, S ic  and C 

3.1. Functional forms andparameters of Majewski and Vogl 

Majewski and Vogl [13] have shown that structural properties and crystal stability of 
various sp-bonded semiconductors and insulators can be adequately reproduced by the 
SCTB method using the following functional forms and parameters. We first of all apply 
these forms and parameters to Si, Sic and C. 
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Table 1. Atomic term values, intra-atomic Coulomb repulsion and universal tight-binding 
parameters [ 1311. 

Si C 

E? ( e v )  -14.68 -19.19 
E; ( e v )  -8.08 -11.79 
U ( e v )  7.64 11.76 

q,,, = -1.38 ~ s o p c o  = 1.68 qscpao = 1.92 
qppn = 2.20 qpp2 = -0.55 

t In the 7 parameters, a and c denote anion and cation. For 
elemental solids, the average is taken. 

The basic functions are constructed by one s and three p valence atomic orbitals per 
atom. The two-centre integrals of the Hamiltonian are expressed by assuming the r-2 
dependence on the inter-atomic distance r [5, 151 as 

Hnt,  = q I r r m h 2 / m r 2 .  (11) 

The parameters qll,m for nearest neighbours are given in table 1. These were fitted to 
obtain adequate band structures for various semiconductors [17]. We have used these 
common parameters for Si, S i c  and C. The coupling of second-nearest neighbours can 
be neglected as discussed in [13]. The energy levels of the free atoms and the intra- 
atomic Coulomb repulsion in equation (4) are also listed in table 1. The former were 
taken from those by the Hartree-Fock calculations [18] and the latter were determined 
by Harrison [ 191. 

For the effective inter-atomic electrostatic function V(r, - r,) in equation ( 6 ) ,  Majew- 
ski and Vogl have used the following form [20]: 

1 e2 exp (-7- U ,  + U ,  pi - r i /  e2  v(rj - r ; )  = - - - 
lr j -r; l  lrj--r;l  e2 

Here U ,  and U, are the intra-atomic Coulomb repulsion of anion and cation. This 
function represents the simple Coulomb function for large distances and expresses the 
effect of charge overlap for short distances. In order to apply this functional form in 
general periodic systems, it is necessary to use the method of summation in reciprocal 
space, such as the Ewald method [21],  because the sum of the first term of equation (12) 
does not converge in real space differently from the sum of the second term of equation 
(12). This method is familiar in calculations of ionic systems [ 2 ]  and the contributions 
from the first term of equation (12) in cPO and cPv of equation (6) can be given as 
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Table 2. Results using a l / r3  form for overlap integrals:. 

Si S i c  C 

B (Mbar) 

Effective charge 

1.1507 1.4673 
9.59 12.85 

14.93 23.98 
-37.33 -59.72 

- 1.47 - 
-12.81 -24.36 
(-9.26) (- 12.68) 

0.88 2.90 
(0.99) (2.24) 
- 0.4498e 

i Values in parentheses are the experimental ones. 

1.7637 
15.19 

36.44 
-91.09 

- 
-36.47 

(-14.74) 
8.24 

(4.43) 

where y is a parameter selected for rapid conversion and U ,  is the volume of the unit cell. 
Here {G} are the reciprocal lattice vectors defined by the lattice vectors {R}of the periodic 
system. The derivative of equation (13b) used in equation (10) can be calculated using 
a similar formula. For S i c  in the zincblende structure, we found that the sums with 
respect to {G} in equations (13a) and (13b) converge for IGI > 20 A-' and those with 
respect to {R} converge for lRI > 10 A.  Also we found that the sum of the second term 
of equation (12) converges for distances larger than 60 A. 

The overlap matrix elements in equation ( 7 )  are simplified by the two-centre approxi- 
mation as well as the Hamiltonian. The determination of the functional form of the two- 
centre overlap integrals Slljm is important because the repulsive interaction between 
atoms is determined by this functional form. As well as Harrison [22],  Majewski and 
Vogl[13] have proposed a functional form following extended Huckel theory [23].  This 
is not a l / r 2  form [22] but a l / r 3  form: 

where do = e 2 ( l / U ,  + l /U,) /2 .  Majewski and Vogl have determined the parameter K 
for each row of the periodic table to obtain adequate overall agreement with the 
experimental bond length and bulk modulus of various sp-bonded semiconductors and 
insulators. In this paper, we have determined K for Si, S i c  and C, respectively, so as to 
reproduce the experimental bond length. 

In this way, we have calculated several basic properties of Si, S i c  and C using the 
above-mentioned functional forms and parameters. The k sums were performed using 
60 special k-points [24]. In table 2,  the fitted parameters K and the calculated energy 
values and bulk moduli B are shown. EB is E,,, - E:,,, , and is equal to the negative of 
the cohesive energy Ecoh. Ett,, contains the spin-polarised energies. The values of Kin 
[13] are 1.31 for Si and 1.67 for C. The calculated effective charge of atoms in S i c  is 
comparable with the effective charge 0.41e determined experimentally [25]. This charge 
transfer is caused by the difference in the on-site energies. 

For Si, EB and B are adequately reproduced. However, for S i c  and C, EB and B are 
much overestimated. Especially, the calculated values of E,  are 1.9 times and 2.7 times 
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Table 3. Results using a l / r2  form for overlap integrals? 

Si S i c  C 

B (Mbar) 

Effective charge 

0.6074 0.9144 
9.70 12.98 

-37.43 -59.83 
18.71 30.03 
- -1.46 
-9.02 -18.29 

(-9.26) (-12.68) 
0.55 1 .89 

(0.99) (2.24) 
- 0.4483e 

1.4502 
15.35 

-91.22 
45.61 

-30.26 
(-14.74) 

- 

5.42 
(4.43) 

t Values in parentheses are the experimental ones. 

larger in magnitude than the experimental values for S i c  and C, respectively. Also the 
thermodynamic stability condition of S ic ,  Ecoh(SiC) > [Ecoh(Si) + Ec,,,(C)]/2, is not 
satisfied. This condition is important in calculations of defects in S i c  containing Si-Si 
and C-C bonds. 

Similar overestimation of the binding energy has been reported by Majewski and 
Vogl[13] for compounds of short bond lengths such as BeO. As pointed out by Harrison 
[22], it seems that the most important thing is the approximate manner in which the 
overlap integrals are treated. Thus we examine other functional forms and parameters 
for Si/,, in equation (14). 

3.2. Use of a 1/r" form for overlap integrals 

We have examined a l / r2  form for overlap integrals following Harrison [22] instead of 
the above l / r3  form. We have replaced do/r3K in equation (14) by l /r2K and have fitted 
K so as to reproduce the experimental bond lengths. The fitted parameters and the 
calculated energy values and bulk moduli are listed in table 3. 

With respect to the energy terms, the change of the form of Si," has mainly affected 
the overlap energies E,,. The other terms are not so different from those in table 2. This 
is because the change in fia results in the overall shift of all the on-site elements Ei, of 
the Hamiltonian and does not affect the electronic structure itself so much. As shown in 
table 3,  E,, has been raised and the overestimation of the binding energies of S i c  and C 
is somewhat improved. For Si, the reproduction of EA is quite good. With respect to the 
bulk modulus B ,  values for S i c  and C have been improved, although that for Si has been 
reduced too much. It should be noted that the thermodynamic stability condition of S i c  
is not yet satisfied. 

If Sll" is a 1/r" form in general, it is possible to analyse calculated values of E A  and 
B in simple representation [26]. Suppose that E,  is expressed as a function of a bond 
length r .  E,,, and E,,, directly depend on r ,  although the dependence of the other terms 
on r is indirect and weak. From the viewpoint of the bond orbital model [15], where the 
integration over the eigenstates in the Brillouin zone is replaced by a sum over the bond 
orbitals, the part of EA directly dependent on r is expressed as a sum of the bond energy 
Ebond(r), which is Eco,(r) + Eov(r) for respective bonds. Eco,(r) and E J r )  are simplified 
as -a/r2 and /3 /rn+2,  respectively, because of the r -2  dependence of HI,,, and the r-" 



The self-consistent tight-binding method 7799 

dependence of S/,". In the present case, cy is common in Si, S i c  and C. By the condition 
of the reproduction of the experimental bond length ro ,  /3 is expressed using ro and cy. 
Therefore, 

€bond (rO) = - (15) 

B = (1/42/3)2n( cy/r;)) (16) 

+ [2/(n + 2)](a/r?l) = - [n/(n + 2)1(cy/ri). 

The bulk modulus is also expressed as 

and 1/42/3 is a coefficient in the case that €bond is the energy per bond. 
By substituting 3 and 2 for n in equations (15) and (16), it can be found that the 

calculated values in tables 2 and 3 obey these equations well. The calculated values of 
Ecov(rO) and Eov(rO) respectively have overall inverse-square dependence on the bond 
lengths ro of Si, S i c  and C. The ratio of EOv(ro) to Ecov(rO) is about -2/5 and about 
- 1/2 in tables 2 and 3. respectively, as predicted by equation (15). The calculated values 
of B for Si, S i c  and C have roughly inverse-fifth dependence on the bond lengths, and 
the ratio of the values in table 2 to those in table 3 is roughly 3/2 as predicted by equation 

From the analysis of equations (15) and (16), it can be said that the calculated 
Ehond(rO) of Si, S i c  and C should have general inverse-square dependence on the 
bond lengths ro (1: 1.6:2.3) and that the calculated B should have general inverse-fifth 
dependence on the bond lengths (1:3.0:8.2) for any value of n. However, the ratio 
between the experimental values of E,(ro) = - Ecoh of Si, S i c  and C is about 1: 1.4: 1.6, 
and that of B is about 1:2.3:4.5. Therefore, within the present theoretical scheme, it is 
difficult to find the universal 1/r" form of S,," which can adequately reproduce all the 
experimental values of EB and B for Si, S i c  and C. 

(16). 

3.3. Use ofapl r"  + q/rr l  form for overlap integrals 

The l / r3  or l /r2 forms of Slifm themselves should be useful for calculations of Si, S i c  and 
C. respectively. However, for the system of S i c  containing Si-Si or C-C bonds as shown 
in our following paper, it is necessary that the basic properties of all Si, S i c  and C,  at 
least the stability condition of S ic ,  should be reproduced. Therefore, in this section, we 
perform a more empirical approach. We have examinedplr" + q/r" forms, where two 
parametersp and q are fitted so as to reproduce not only the experimental bond length 
but also the experimental binding energy. Here m and n are integers for simplicity. 

When d0/Kr3  in equation (14) is replaced byp/r" + q/r"  withp, q > Oandm > n 3 0, 
calculated values can be predicted as well as the above-mentioned analysis. The bond 
energy Ehond(r) is simplified as - cy/r2 + /3/rm+* + y / r n f 2 ,  where cy, /3, y > 0. Here /3 and 
y are determined so as to reproduce the bond length and the binding energy. It can be 
considered that the energy terms other than Eov(r) do not depend so much on the shape 
of Slljm. Thus the fitting for the experimental E,  means the fitting of Eo,(ro) for the value 
EEtP, which is given by subtracting calculated Epro, MMad and E,,, from the experimental 
EB. Finally, /3 and y are expressed using m, n,  cy, rO and EEtP, and the bulk modulus B is 
expressed as 

B = (1/42/3)[(m + 2)(n + 2)(1 + EEX,P/Ecov(ro)) - mn]cy/r& (17) 

where Ecov(rO) is -cy/r$. The values of E ~ P / E c o v ( r o )  for Si, S i c  and C do not depend so 
much on the shape of S,," and are estimated by the values in tables 2 and 3. Using these 
values, m and n can be determined so as to reproduce adequately all the experimental 
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Table 4. Results using a p / r 4  + 9 form for overlap integralst 

Si S i c  C 

0.6883 
0.0214 
9.69 

18.47 
-37.42 

_. 

-9.26 
(-9.26) 

0.89 
(0.99) 
- 

0.4244 
0.0635 

13.09 
-59.93 

35.61 
-1.45 

-12.68 
( - 12.68) 

2.36 
(2.24) 
0.4469e 

0.2988 
0.1586 

15.63 

61.04 

-14.74 
(-14.74) 

5.45 

-91.41 

- 

(4.43) 
- 

t Values in parentheses are the experimental ones. 

B for Si, S i c  and C. Using the condition ICs, y > 0 and comparing t,,e values 
estimated by equation (16) with the experimental values, it can be concluded that the 
set m = 4 and II = 0 is the best choice. The repulsive potential form proposed by 
Bechstedt and Harrison [27] corresponds to the set m = 10 and II = 1, although they 
fitted parameters so as to reproduce the bond length and the bulk modulus. This set 
should result in overestimation of B in Si and underestimation of B in C in our theoretical 
scheme. 

Table 4 shows the fitted parameters and calculated values by using a p / r 4  + q form 
for SN8,. As mentioned above, mainly E,, is changed so as to reproduce the experimental 
EB. The values of B are adequately reproduced for all Si, S i c  and C as compared with 
the values in tables 2 and 3. 

Table 5 shows the summary of the calculated values of EB and B using the l /r3,  l / r2  
andp/r4 + q forms of overlap integrals. The results by a p  exp( -qr)  form are also shown. 
In the calculation using the p exp( -qr )  form, parameters p and q were fitted so as to 
reproduce the bond length and the binding energy. However, the bulk moduli are poorly 
reproduced. The calculated phonon frequencies and s-p mixing are also shown. The s-p 
mixing [28] is the ratio of the p-orbital occupancy to the s-orbital occupancy. Thesevalues 
are comparable with those in [28,29]. In the calculation of the phonon frequencies, the 
calculation of atomic forces described in section 2 is utilised. The results of EB and B for 
Si agree qualitatively with those by Paxton and Sutton [29]. Our results using the l/r3 
form and the l /r2 form for Sllnm correspond to their results using the l/rs form and the 
l /r4 form for the inter-atomic repulsive potential, respectively. 

It can be said that the 1/r2 form of SI," is suitable for calculations of structural 
properties of S i c  and C and it seems that the l/r3 form of SI/,,  is suitable for Si. It can be 
said that thep/r4 + q form is more useful for representing structural properties of all Si, 
S i c  and C. Of course, the stability condition of S ic  for Si and C is satisfied in this form. 

4. Structural stability 

In this section, we report the results on the nature of bonding and the structural stability 
in Si and S i c  calculated using the SCTB method with the above-mentioned functional 
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Table 5.  Summary of binding energies, bulk moduli and phonon frequencies of Si, S i c  and 
C calculated by the SCTB method with several forms of overlap integrals?. 

Si S i c  C 

B (Mbar) 
i l r 3  
l l r '  
p l r '  + 4 
P exp(-qr) 

To(r) (THz) 
1 /r3 
p l r 4  + 4 

s-p mixing 
i l r 3  

Pl'j + 4 
l / r 2  

-12.81 
-9.02 
-9.26 
-9.26 
(-9.26) 

0.88 
0.55 
0.89 
0.40 

(0.99) 

16.9 
17.0 

(15.5) 

1.872 
1.888 
1.887 

- 24.36 
-18.29 
-12.68 
-12.68 

( -  12.68) 

2.90 
1.89 
2.36 
0.84 

(2.24) 

33.8 
31.1 

(23.9) 

2.194 
2.219 
2.243 

-39.47 
-30.26 
-14.74 
-14.74 

( -  14.74) 

8.24 
5.42 
5.45 
1.36 

(4.43) 

60.3 
50.9 

(39.2) 

2.439 
2.472 
2.529 

t Values in parentheses are the experimental ones. 

forms and parameters. Figure 1 shows the dependence on volume of the individual 
contributions to the binding energy of Si and S i c  calculated using thep/r4 + q form for 
Sllfm. The curves for C are qualitatively similar to those for Si. We have examined similar 
curves using the l / r3  form and the l /r2 form for SllCm. In figure 1, mainly the curves of 
E,, are changed so as to reproduce the experimental binding energy and to reproduce 
adequately the bulk modulus as compared with those obtained using the other forms of 

It can be said that mainly E,, and E,,, dominate the binding energy and the structural 
properties in all cases. E,, and E,,, depend on volume as analysed in section 3. In S ic ,  
E)&d does not depend so much on volume and is only a small part of the binding energy. 
However, it should be noted that this is the result in the perfect crystal. 

In figure 1, Epro increases gradually with decreasing volume in Si, S i c  and C. Epro is 
the promotion energy in Si and C. In Sic ,  E,,: contains the promotion energy and the 
effect of charge transfer. However, the latter is small because the large increase in the 
intra-atomic Coulomb energy in C counterbalances the energy gain by electron transfer 
from the atomic levels of Si to those of C. As shown by Paxton et a1 [28 ] ,  we have also 
found that the s-p mixing increases with decreasing volume in Si, S i c  and C ,  and this is 
the origin of the dependence of Epro on volume because the s-p splitting in calculation 
of Epro is a constant as shown in equation (9b). The dependence of the s-p mixing on 
volume in Si resembles well that in [28 ] .  

EMad in S i c  does not seem to depend much on volume. As volume increases, E M a d  

becomes slightly more negative and is a minimum at larger volume than the equilibrium 

S / / ' m *  
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Figure 1. Energy-volume curves of the individual contributions to the binding energy of (a) 
Si and ( b )  SIC calculated by the SCTB method with theplr‘  + q form for overlap integrals 

volume. This is caused by the balance of the following two effects. The effective charge 
increases gradually with increasing volume. Inversely, the inter-atomic electrostatic 
function becomes weaker as volume increases. 

The present dependence of the effective charge on volume is caused by the depen- 
dence of the off-diagonal Hamiltonian matrix element on the bond length, and is 
common in the tight-binding type theories. For example, the polarity in the bond orbital 
model [15], which is a measure of charge transfer, increases with increasing bond length 
because of decreasing magnitude of off-diagonal matrix element. This result is consistent 
with the experimental pressure dependence of the transverse effective charge e$ (the 
dynamic charge) in various compound semiconductors, where e r  decreases upon com- 
pression [30]. It can be said that ionicity decreases upon compression in most compounds. 
However, for S i c  in the zincblende structure, an increase of e+ upon compression has 
been observed [31], This experiment is inconsistent with the present calculated result 
and the prediction in usual tight-binding theories. Recently, Christensen et a1 [32] have 
obtained the polarity and ionicity in the tight-binding representation by transforming 
the results of the first-principles calculation using the linear muffin-tin orbital (LMTO) 
method, and have shown that the volume coefficients of the polarity and ionicity are 
negative in S i c  differently from those of most compounds. This behaviour is explained 
by the special character of the first-row element C because of the absence of occupied 
core p orbitals. 

Figures 2 and 3 show the binding energy-volume curves for several crystal structures 
of Si and S i c  calculated using the l / r 3  form and thep/r4 + q form for SllZm. For the P-Sn 
structure, the axial ratio c/a is fixed to be 0.5516 in Si and 0.6 in Sic .  For structures other 
than the zincblende and diamond structures, the second-neighbour interactions are 
included in the Hamiltonian and overlap matrices. However, the second-neighbour 
parameters qlltm have been chosen according to [13], and so the contributions from the 
second neighbours are small in general. 

For the results of Si in figure 2, the stability of the diamond structure and the 
possibility of a pressure-induced phase translation to the D-Sn structure are reproduced 
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Figure 2. Binding energy of Si as a function of atomic volume for the diamond, p-sn, BCC 
and FCC structures calculated by the SCTB method with (a)  the l / r 3  form and ( b )  thep/rJ  + q 
form for overlap integrals. 
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Figure 3. Binding energy of SIC as a function of atomic volume for the zincblende, P-Sn, 
rocksalt and CsCl structures calculated by the SCTB method with (a) the l / r3  form and ( b )  
the p/r4 + q form for overlap integrals 

in both cases of the forms of S,itm. It can be said that the results for the fourfold- 
coordinated structures (the diamond and the p-Sn structure) in figures 2(a) and ( b )  agree 
qualitatively with those calculated by the density-functional theory [33]. The results 
using the l/r3 form are comparable with those obtained by Paxton and Sutton [29] using 
a l/r5 repulsive potential. As well as the results in [29], the energies of the close-packed 
structures are poorly reproduced in figure 2. Especially, the energies of the close-packed 
structures calculated using thep/r4 + q form are much higher. This is because E,, using 
the p/r4 + q form is overestimated for large r and is counted for a large number of 
neighbours in the close-packed structures. 
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Table 6. Breakdown of the energy differences between the diamond and wurtzite structures 
of Si and between the zincblende and wurtzite structures of SIC. All the values are calculated 
using the l /r3 form for overlap integrals. All energies are in eV per two atoms. 

S-P Effective 
Structure EB mixing Epro E,"" E," E,,, charge 

Si 
Diamond -12.8069 1.8717 9.5917 -37.3310 14.9324 - - 
Wurtzite -12.8013 1.8741 9.6073 -37.3398 14.9312 - - 

SIC 
Zincblende -24.3626 2.1935 12.8495 -59.7213 23.9793 -1.4702 0.4498e 
Wurtzite -24.3636 2.1965 12.8690 -59.7338 23.9770 -1.4758 0.4504e 

The results of S i c  in figure 3 are similar to those of Si. The energies of the close- 
packed structures calculated using the p / r 4  + q form are much higher for the above- 
mentioned reason. The results in both forms of show the stability of the zincblende 
structure and the possibility of a pressure-induced phase translation to the 6-Sn structure. 
The result is consistent with the general relation of phase stability to ionicity [34]. 
However, the ab initio calculations [32,35] have shown the possibility of a pressure- 
induced phase translation not to the P-Sn structure but to the rocksalt structure, where 
the ionic-like charge distribution keeps the semiconducting behaviour in the rocksalt 
structure and stabilises the rocksalt structure as compared with the S-Sn structure [35]. 
These behaviours are also explained by the fact that C is a first-row element and does 
not contain occupied core p orbitals. In the present results using the l / r 3  form, the 
minimum energy of the rocksalt structure is indeed lower than that of the O-Sn structure, 
but the electronic structure of S i c  in the rocksalt structure is metallic and the phase 
translation to the rocksalt structure could not be reproduced. 

We have calculated the energies of the wurtzite structures of Si and S i c  with the 
same equilibrium volume as the diamond and zincblende structures using the l / r 3  form 
for SlIcm. The axis ratio is fixed to be ideal. Table 6 shows the results. 

For Si, the diamond structure is more stable than the wurtzite structure by 0.0055 eV 
per two atoms, although the energy difference is 0.02 eV per two atoms in the density- 
functional calculation [36]. The results can be analysed similarly to Paxton [37]. It can 
be said that the inter-atomic bonding is stronger in the wurtzite structure than in the 
diamond structure. This makes E,,, more negative in the wurtzite structure, but makes 
Epro larger in the wurtzite structure because of the larger s-p mixing as shown in table 6. 
In addition, E,, is larger in the diamond structure than in the wurtzite structure due to 
the s-p mixing because f s  in equation (7) is larger than fp in the tetrahedral structure. 
The value of the binding energy difference between the diamond structure and the 
wurtzite structure is determined by the delicate balance of these three energy terms. It 
is probable that the value of the energy difference may be much influenced by the tight- 
binding parameters such as E!,, qllfm and so on. In order to obtain more quantitative 
results, it should be important to use the parameters that can well reproduce the valence 
band structures of both the diamond and wurtzite structures. 

For Sic ,  the present result shows that the wurtzite structure is more stable than the 
zincblende structure by0.0009 eV per S i c  pair. However, the wurtzite structure is higher 
in energy by 0.006 eV per S i c  pair in the density-functional calculation [35], although 
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this value is at the limits of the accuracy of the calculations. The quantitative reliability 
of the present method is not so good, and it might be necessary to use another set of 
parameters in order to obtain more quantitative results as discussed above. However, 
it should be noted that the extremely small energy difference between the zincblende 
structure and the wurtzite structure in S i c  is reproduced qualitatively in the present 
method. This can be analysed similarly to that of Si. As shown in table 6 ,  the roles of the 
respective terms .Epro, E,,, and E,, for the relative stability between the two structures 
are similar to those in Si. The total balance of these three terms in the two structures of 
S i c  makes the zincblende structure more stable as well as in the case of Si. Thus it can 
be said that the effect of ,?&ad is essential in stabilising the wurtzite structure and making 
the energy difference between the two structures of S i c  extremely small. The effective 
charge is a little larger in the wurtzite structure in the present calculation. The wurtzite 
structure is more favourable for the inter-atomic electrostatic interaction, and is known 
to be stable for compounds with larger ionicity than that of compounds in the zincblende 
structure [38]. In this way, the small stacking fault energy in S ic  and the extremely small 
energy difference between S i c  polytypes seem to be explained from the viewpoint of 
the balance between E M a d  and the other terms in the present theoretical scheme. 

5. Discussion 

In order to apply the SCTB method to lattice defects in Sic ,  we have examined mainly 
the functional forms for the overlap integrals with use of ones by Majewski and Vogl for 
the other parameters and functional forms so as to reproduce the basic properties of Si, 
S i c  and C. It can be said that the l/r2 form of overlap integrals is suitable for calculations 
of structural properties of S i c  and C and that the l/r3 form is suitable for Si. And we 
have found that the p / r 4  + q form is useful for representing structural properties of all 
Si, S i c  and C,  where the thermodynamic stability condition of S ic  for Si and C is 
satisfied. This is important in treating lattice defects containing wrong bonds such as 
grain boundaries in Sic .  

The nature of bonding and the phase stability in Si and S ic  have been analysed by 
the SCTB method using the present functional forms and parameters. The energies 
and the nature of bonding of the fourfold-coordinated structures in Si and S ic  are 
qualitatively reproduced by using the l/r3 forms or the p / r 4  + q form for overlap 
integrals. However, the energies and equilibrium volumes of close-packed structures 
are poorly reproduced. Thus it is necessary to be careful in use of the present functional 
forms for largely distorted systems in Si and Sic .  

It should be noted that the p / r 4  + q form for overlap integrals has been found 
phenomenologically on the assumption that there should exist simple universal forms 
such as p/r" + q/r"  so as to represent the binding energies and the bulk moduli of all 
Si, S i c  and C. The p / r 4  + q form itself does not necessarily have a physical significance 
nor give the best fit. However, it is certain that this form for overlap integrals coupled 
with other functional forms and parameters in the SCTB method can give relatively 
correct structural properties of Si, S i c  and C at least where all the atoms are fourfold- 
coordinated, which is satisfied in a model of a grain boundary in our following paper. 

Of course, in order to obtain more quantitative results within the present theoretical 
scheme, it should be necessary to choose functional forms and parameters for respective 
systems differently from the universal forms and parameters used in the present paper. 
Especially in order to represent the special characters of S i c  caused by the first-row 
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element C, it might be inadequate to use the universal scaling laws of the two-centre 
integrals of the Hamiltonian and the overlap integrals as in the present paper. 

With regard to structures other than the fourfold-coordinated ones, new transferable 
tight-binding models have recently been proposed for Si [39,40]. In these models, 
the functional forms of the two-centre integrals of the Hamiltonian and the repulsive 
potentials are given by multiplying the usual functional forms by attenuation functions, 
and the behaviour of the two-centre integrals and the repulsive potentials for large 
distances is modified and these are smoothly truncated within proper distances. Thus 
the binding energies and the equilibrium volumes of close-packed structures can be well 
reproduced as well as the fourfold-coordinated structures. These types of functional 
forms of the two-centre integrals of the Hamiltonian and the overlap integrals must 
improve the representation of the close-packed structures in the present SCTB method, 
which will be necessary in applying the SCTB method for largely distorted systems or 
close-packed structures in future. 

Finally, we should comment on the advantages of the present SCTB method over the 
TBB model [6]. The main difference between these two methods is the treatment of the 
effective atomic charges and the interactions between them. In the TBB model, the local 
charge neutrality is imposed as an approximate self-consistency and the on-site elements 
are adjusted so as to prevent charge transfer. The electron-electron interactions are 
included only in the site energy. In the SCTB method, the effective atomic charges are 
calculated self-consistently and the inter-atomic electrostatic interactions between them 
are calculated as EMad as well as the intra-atomic electrostatic interactions in .Epro. We 
agree that the local charge neutrality and the TBB model are effective in metals, metallic 
compounds and semiconductors such as Si. However, the validity of the local charge 
neutrality and the TBB model is doubtful in sp-bonded compounds with both ionic and 
covalent characters where charge transfer exists as compared with the superposition of 
the neutral atomic charges. 

Of course, charge density in solids cannot be partitioned among atoms in an unam- 
biguous way in general, and it might be possible to find a division of the charge density 
into the atomic regions so as to maintain the local charge neutrality in the respective 
regions. Thus we do not deny the possibility that the inter-atomic electrostatic inter- 
actions in the SCTB method could be incorporated in the TBB model as another term such 
as the site energy. In such cases, the difference between the TBB model and the SCTB 
method would be only the division of the binding energy into different terms. However, 
we insist that the SCTB method is more useful and superior in dealing with sp-bonded 
compounds with both ionic and covalent characters, because many properties of sp- 
bonded compounds can be effectively explained by incorporating the viewpoint of the 
interactions between the effective atomic charges and the physical origins of several 
properties cannot be explained from the viewpoint of the local charge neutrality. This 
is more important in treating lattice defects or distorted systems. 

For example, it has been shown that the phase transition from the zincblende 
structure to the rocksalt structure in 111-V and 11-VI compounds can be well explained 
as the balance between the inter-atomic electrostatic energy and the covalent energy 
within the frozen potential approximation in the LMTO method [32, 411. It has been 
deduced that the inter-atomic electrostatic interactions stabilise the eclipsed con- 
figuration in the wurtzite structure more than the staggered configuration in the 
zincblende structure and govern the stacking fault energies in 111-V and 11-VI com- 
pounds [42]. Recently, it has been pointed out that the effective atomic charges and the 
interactions between them are important in determining the atomic structure of the 
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surfaces of compound semiconductors. Tsai et a1 [43] have shown by first-principles 
calculations that the relaxation angle within the rigid-rotation model of the (1 10) 
zincblende surface decreases with increasing ionicity of compounds because of the 
Coulomb forces between the surface anions and the cations lying in and below the 
surface. We think that it is possible to explain and reproduce all the above properties 
and phenomena within the SCTB method if the functional forms and parameters are 
determined properly, because the inter-atomic electrostatic interactions are directly 
incorporated in the SCTB method. However, we do not think that all the above properties 
and phenomena can be effectively represented within the local charge neutrality. 

This point is also important in Sic .  With regard to Sic ,  it should be noted that the 
effective atomic charges are not small. This charge transfer has been obviously observed 
as compared with the superposition of the neutral atomic charges in the first-principles 
charge-density calculations [32,35], where the charge flow easily occurs because of the 
absence of core p orbitals in C and the compound has largely ionicproperties as compared 
with the ionicity defined spectroscopically [38]. Thus it is essential to use the SCTB method 
for Sic .  As shown in the preceding section, the special properties of S i c  as compared 
with Si and C such as the small stacking fault energy and the extremely small energy 
difference between polytypes do not seem to be explained without incorporating the 
inter-atomic electrostatic energy. If the local charge neutrality is imposed for Sic ,  the 
centres of gravity of the on-site elements at Si and at C would be adjusted to be the same 
as each other to prevent charge transfer, and the properties of S i c  would be reproduced 
as only the intermediate ones between Si and C. 

In conclusion, the SCTB method is capable of treating systems with both ionic and 
covalent characters, and is also applicable to calculations of lattice defects or disordered 
systems, because atomic forces can be given very easily via the Hellmann-Feynman 
theorem in this method as well as in the other tight-binding theories. We have presented 
clearly the formulation of electronic structure, total energy and atomic forces in periodic 
systems with use of the supercell technique for defect calculations. By choosing adequate 
functional forms and parameters for the two-centre integrals of the Hamiltonian and the 
overlap matrix, the effective inter-atomic electrostatic function and so on, the SCTB 
method should be a powerful scheme for calculations of complex systems containing a 
large number of atoms with both ionic and covalent characters, which cannot be treated 
effectively by using the other tight-binding theories. 
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